NCERT Solutions Class 7 Maths Chapter 4 Simple Equations Exercise 4.1

Simple Equations

Exercise 4.1

1). Complete the last column of the table.

Answer:

S No. Equation Value Say, whether the Equation is satisfied (Yes/No)
i x + 3 = 0 x = 3 No
ii x + 3 = 0 x = 0 No
iii x + 3 = 0 x = -3 Yes
iv x – 7 = 1 x = 7 No
v x – 7 = 1 x = 8 Yes
vi 5x = 25 x = 0 No
vii 5x = 25 x = 5 Yes
viii 5x = 25 x = -5 No
ix m/3 = 2 m = -6 No
x m/3 = 2 m = 0 No
xi m/3 = 2 m = 6 Yes

i). x + 3 = 0

 put x = 3 in L.H.S

 L.H.S = 3 + 3 = 6

L.H.S ≠ R.H.S

x = 3 is not the solution.

ii). x + 3 = 0

 put x = 0 in L.H.S

 L.H.S = 0 + 3 = 3

L.H.S ≠ R.H.S

x = 0 is not the solution.

iii). x + 3 = 0

 put x = -3 in L.H.S

 L.H.S = -3 + 3 = 0

L.H.S = R.H.S

x = -3 is the solution.

iv). x – 7 = 1

 put x = 7 in L.H.S

 L.H.S = 7 – 7 = 0

L.H.S ≠ R.H.S

x = 7 is not the solution.

v). x – 7 = 1

 put x = 8 in L.H.S

 L.H.S = 8 – 7 = 1

L.H.S = R.H.S

x = 8 is the solution.

vi). 5x  = 25

 put x = 0 in L.H.S

 L.H.S = 5 X 0 = 0

L.H.S ≠ R.H.S

x = 0 is not the solution.

vii). 5x  = 25

 put x = 5 in L.H.S

 L.H.S = 5 X 5 = 25

L.H.S = R.H.S

x = 5 is the solution.

viii). 5x  = 25

 put x = -5 in L.H.S

 L.H.S = 5 X -5 = -25

L.H.S ≠ R.H.S

x = -5 is not the solution.

ix). m/3 = 2

 put m = -6 in L.H.S

 L.H.S = -6/3 = -2

L.H.S ≠ R.H.S

m = -6 is not the solution.

x). m/3 = 2

 put m = 0 in L.H.S

 L.H.S = 0/3 = 0

L.H.S ≠ R.H.S

m = 0 is not the solution.

xi). m/3 = 2

 put m = 6 in L.H.S

 L.H.S = 6/3 = 2

L.H.S = R.H.S

m = 6 is the solution.

2). Check whether the value given in the brackets is a solution to the given equation or not:

(a) n + 5 = 19 (n = 1)                         (b) 7n + 5 = 19 (n = – 2)

(c) 7n + 5 = 19 (n = 2)                       (d) 4p – 3 = 13 (p = 1)

(e) 4p – 3 = 13 (p = – 4)                     (f) 4p – 3 = 13 (p = 0)

Solutions:

(a) n + 5 = 19                            (n = 1)

    L.H.S = n + 5 = 1 + 5 = 6

    R.H.S = 19

 L.H.S ≠ R.H.S

Therefore, n =1 is not the solution of the given equation.     

(b) 7n + 5 = 19                          (n = – 2)

L.H.S = 7n + 5 = 7(-2) + 5

                       = -14 + 5

                       = -9     

    R.H.S = 19

 L.H.S ≠ R.H.S

Therefore, n = -2 is not the solution of the given equation.

(c) 7n + 5 = 19                           (n = 2)   

L.H.S = 7n + 5 = 7(2) + 5

                       = 14 + 5

                       = 19    

    R.H.S = 19

 L.H.S = R.H.S

Therefore, n = 2 is the solution of the given equation.                

(d) 4p – 3 = 13                           (p = 1)

L.H.S = 4p – 3

         = 4(1) – 3

         = 4 – 3

         = 1

    R.H.S = 13

 L.H.S ≠ R.H.S

Therefore, p = 1 is not the solution of the given equation.

(e) 4p – 3 = 13                    (p = – 4)

L.H.S = 4p – 3

         = 4(-4) -3

         = -16- 3

         = -19   

    R.H.S = 13

 L.H.S ≠ R.H.S

Therefore, p = -4 is not the solution of the given equation.                 

(f) 4p – 3 = 13      (p = 0)

L.H.S = 4p – 3

         = 4(0) -3

         = 0- 3

         = -3     

    R.H.S = 13

 L.H.S ≠ R.H.S

Therefore, p = 0 is not the solution of the given equation.    

3). Solve the following equations by trial and error method:

(i) 5p + 2 = 17                           (ii) 3m – 14 = 4

Solution:

(i) 5p + 2 = 17

 Let p = 1

L.H.S = 5p + 2

         = 5(1) + 2

         = 5 + 2

         = 7

    R.H.S = 17

 L.H.S ≠ R.H.S

Let p = 2

L.H.S = 5p + 2

         = 5(2) + 2

         = 10 + 2

         = 12

    R.H.S = 17

 L.H.S ≠ R.H.S

Let p = 3

L.H.S = 5p + 2

         = 5(3) + 2

         = 15 + 2

         = 17    

    R.H.S = 17

 L.H.S = R.H.S

p = 3 is the solution of the given equation.

(ii) 3m – 14 = 4

Let m = 1

L.H.S = 3m – 14

         = 3(1) – 14

         = 3 – 14

         = -11

    R.H.S = 4

 L.H.S ≠ R.H.S

Let m = 2

L.H.S = 3m – 14

         = 3(2) – 14

         = 6 – 14

         = -8

    R.H.S = 4

 L.H.S ≠ R.H.S

Let m = 3

L.H.S = 3m – 14

         = 3(3) – 14

         = 9 – 14

         = -5

    R.H.S = 4

 L.H.S ≠ R.H.S

Let m = 4

L.H.S = 3m – 14

         = 3(4) – 14

         = 12 – 14

         = -2

    R.H.S = 4

 L.H.S ≠ R.H.S

Let m = 5

L.H.S = 3m – 14

         = 3(5) – 14

         = 15 – 14

         = 1

    R.H.S = 4

 L.H.S ≠ R.H.S

Let m = 6

L.H.S = 3m – 14

         = 3(6) – 14

         = 18 – 14

         = 4

    R.H.S = 4

 L.H.S = R.H.S

m = 6 is the solution of the given equation.

4). Write equations for the following statements:

(i) The sum of numbers x and 4 is 9.

 x + 4 = 9

(ii) 2 subtracted from y is 8.

 y – 2 = 8

(iii) Ten times a is 70.

 10a = 70

(iv) The number b divided by 5 gives 6.

b/5 = 6

(v) Three-fourth of t is 15.

¾ X t = 15

(vi) Seven times m plus 7 gets you 77.

7m + 7 = 77

(vii) One-fourth of a number x minus 4 gives 4.

¼ X x -4 = 4

(viii) If you take away 6 from 6 times y, you get 60.

6y – 6 = 60

(ix) If you add 3 to one-third of z, you get 30.

1/3 X z + 3 = 30

5). Write the following equations in statement forms:

(i) p + 4 = 15         (ii) m – 7 = 3         (iii) 2m = 7            (iv)m/5 = 3

(v)3m/5= 6             (vi) 3p + 4 = 25     (vii) 4p – 2 = 18

(viii)p/2 + 2 = 8

Answer:

(i) p + 4 = 15

The Sum of a number p and 4 is 15.

(ii) m – 7 = 3

7 subtracted from a number m gives 3.          

(iii) 2m = 7

Two times m is 7.       

(iv)m/5 = 3

m divided by 5 is 3.

(v)3m/5= 6

3 times of m divided by 5 gives 6.           

(vi) 3p + 4 = 25

The sum of 3 times of a number p and 4 is 25.     

(vii) 4p – 2 = 18

The difference of 4 times of a  p and 2 is 18.

(viii)p/2 + 2 = 8

 The sum of half of p and 2 gives 8.

 

6). Set up an equation in the following cases:

(i) Irfan says that he has 7 marbles more than five times the marbles Parmit has. Irfan has 37 marbles. (Take m to be the number of Parmit’s marbles.)

Number of marbles with Irfan = 37

Let the number of marbles with Parmit be m

The required equation is

5m + 7 = 37

(ii) Laxmi’s father is 49 years old. He is 4 years older than three times Laxmi’s age. (Take Laxmi’s age to be y years.)

Let the age of Laxmi be y years

Age of Laxmi’s father = 49

3y + 4 = 49

(iii) The teacher tells the class that the highest marks obtained by a student in her class is twice the lowest marks plus 7. The highest score is 87. (Take the lowest score to be l.)

Let the lowest score be l

Highest score = 87

2l + 7 = 87

(iv) In an isosceles triangle, the vertex angle is twice either base angle. (Let the base angle be b in degrees. Remember that the sum of angles of a triangle is 180 degrees).

Let the base angle be b in degrees

Base angles of isosceles triangle are congruent.

Vertex angle = 2b

Sum of the three angles of a triangle is 1800.

required equation is 2b + b + b = 180

                                  4b = 180.

Click here for the solutions of 

Exercise 4.1

Exercise 4.2

Exercise 4.3

Exercise 4.4

Exercise 3.1

Exercise 3.2

Exercise 3.3

Exercise 3.4

Loading

Leave a Comment

Your email address will not be published. Required fields are marked *

error: Content is protected !!