NCERT Solutions Class 7 Maths Chapter 11 Perimeter and Area Exercise 11.2

Perimeter and Area

Exercise 11.2

1). Find the area of each of the following parallelograms:

a) Given: base = 7 cm

height = 4 cm

To find: Area of parallelogram

Area of parallelogram = base X height

                                  = 7 X 4

                                  = 28 Sq cm

b) Given: base = 5 cm

height = 3 cm

To find: Area of parallelogram

Area of parallelogram = base X height

                                  = 5 X 3

                                  = 15 Sq cm

c) Given: base = 2.5 cm

height = 3.5 cm

To find: Area of parallelogram

Area of parallelogram = base X height

                                  = 2.5 X 3.5

                                  = 8.75 Sq cm

d) Given: base = 5 cm

height = 4.8 cm

To find: Area of parallelogram

Area of parallelogram = base X height

                                  = 5 X 4.8

                                  = 24 Sq cm

e) Given: base = 2 cm

height = 4.2 cm

To find: Area of parallelogram

Area of parallelogram = base X height

                                  = 2 X 4.2

                                  = 8.4 Sq cm

2). Find the area of each of the following triangles:

a) Given: base = 4 cm

height = 3 cm

To find: Area of triangle

Area of triangle = ½ X base X height

                                  = ½ X 4 X 4

                                  = 8 sq cm

b) Given: base = 5 cm

height = 3.2 cm

To find: Area of triangle

Area of triangle = ½ X base X height

                                  = ½ X 5 X 3.2

                                  = 8.0 sq cm

c) Given: base = 3 cm

height = 4 cm

To find: Area of triangle

Area of triangle = ½ X base X height

                                  = ½ X 3 X 4

                                  = 6 sq cm

d) Given: base = 3 cm

height = 2 cm

To find: Area of triangle

Area of triangle = ½ X base X height

                                  = ½ X 3 X 2

                                  = 3 sq cm

3). Find the missing values:

Sr Base Height Area of the parallelogram
a 20 cm 246 cm2
b 15 cm 154.5 cm2
c 8.4 cm 48.72 cm2
d 15.6 cm 16.38 cm2

Answer:

Sr Base Height Area of the parallelogram
a 20 cm 12.3 cm 246 cm2
b 10.3 cm 15 cm 154.5 cm2
c 5.8 cm 8.4 cm 48.72 cm2
d 15.6 cm 1.05 cm 16.38 cm2

a) Given: base = 20 cm

Area of parallelogram = 246 cm2

To find: height of parallelogram

Area of parallelogram = base X height

                     246       = 20 X height

              20 X height  = 246

              height           = 246 ÷ 20

              height           = 12.3 cm

b) Given: height = 15 cm

Area of parallelogram = 154.5 cm2

To find: base of parallelogram

Area of parallelogram = base X height

                     154.5    = base X 15

              base X 15     = 154.5

              base             = 154.5 ÷ 15

              base             = 10.3 cm

c) Given: height = 8.4 cm

Area of parallelogram = 48.72 cm2

To find: base of parallelogram

Area of parallelogram = base X height

                     48.72    = base X 8.4

              base X 8.4     = 48.72

              base             = 48.72 ÷ 8.4

              base             = 5.8 cm

d) Given: base = 15.6 cm

Area of parallelogram = 16.38 cm2

To find: height of parallelogram

Area of parallelogram = base X height

                     16.38    = 15.6 X height

              15.6 X height  = 16.38

              height           = 16.38 ÷ 15.6

              height           = 1.05 cm

4). Find the missing values:

Sr Base Height Area of triangle
a 15 cm 87 cm2
b 31.4 mm 1256 mm2
c 22 cm 8.4 cm 170.5 cm2

Answer:

Sr Base Height Area of triangle
a 15 cm 11.6 cm 87 cm2
b 80 cm 31.4 mm 1256 mm2
c 22 cm 15.5 cm 170.5 cm2

 

a) Given: base = 15 cm

Area of triangle = 87 cm2

To find: height of triangle

Area of triangle = ½ X base X height

                          87      = ½  X 15 X height

          ½ X 15 X height  = 87

              height           = (87 X 2 )÷ 15 = 174 ÷ 15

              height           = 11.6 cm

b) Given: height = 31.4 mm

Area of triangle  = 1256 mm2

To find: base of triangle

Area of triangle = ½ X base X height

                     1256    = ½ X base X 31.4

       ½ X base X 31.4 = 1256

              base             = (1256 X 2) ÷ 31.4

              base             = 80 mm

 

c) Given: height = 22 cm

Area of triangle  = 170.5 cm2

To find: height of triangle

Area of triangle  = ½ X base X height

                     170.5    = ½ X  22 X height

   ½ X  height X 22     = 170.5

              height          = (170.5 X 2) ÷ 22

              height          = 15.5 cm

5). PQRS is a parallelogram (Fig 11.23). QM is the height from Q to SR and QN is the height from Q to PS. If SR = 12 cm and QM = 7.6 cm. Find:

(a) the area of the parallegram PQRS

(b) QN, if PS = 8 cm

i) Given: SR = 12 cm

QM = 7.6 cm

To find: Area of parallelogram

Area of parallelogram = base X height

                                  = 12 X 7.6

                                  = 91.2 sq cm

ii) PS = 7.6 cm

To find: QN

Area of parallelogram = base X height

                                  = PS X QN

                     91.2       = 8 X QN

                     QN X 8 = 91.2

                           QN = 91.2 ÷ 8

                                  = 11.4 cm

Ans: area of parallelogram = 91.2 sq cm

QN = 11.4 cm

6). DL and BM are the heights on sides AB and AD respectively of parallelogram ABCD (Fig 11.24). If the area of the parallelogram is 1470 cm2, AB = 35 cm and AD = 49 cm, find the length of BM and DL.

Given: ABCD is a parallelogram

AB = 35 cm

AD = 49 cm

Area of ABCD = 1470 cm2

To find: BM =?

              DL =?

Area of parallelogram = base X height

                     1470     = AB X DL

              AB X DL               = 1470

              35 X DL        = 1470

                     DL         = 1470 ÷ 35

                                  = 42 cm

Area of parallelogram = base X height

                     1470     = AD X BM

              AD X BM       = 1470

              49 X BM        = 1470

                     BM         = 1470 ÷ 49

                                  = 30 cm

Ans: BM = 30 cm

       DL = 42 cm

7). DABC is right angled at A (Fig 11.25). AD is perpendicular to BC. If AB = 5 cm, BC = 13 cm and AC = 12 cm, Find the area of DABC. Also find the length of AD.

Given: DABC is right angled at A

AB = 5 cm

BC = 13 cm

AC = 12 cm

To find: AD = ?

A(DABC) = ½ X base X height

              = ½ X AB X AC

              = ½ X 5 X 12

              = 5 X 6

              = 30 sq cm

A(DABC) = ½ X base X height

              = ½ X BC X AD

      30    = ½ X 13 X AD

½ X 13 X AD = 30

              AD = (30 X 2) ÷ 13

                     = 60 ÷ 13

                     = 4.61 cm

8). DABC is isosceles with AB = AC = 7.5 cm and BC = 9 cm (Fig 11.26). The height AD from A to BC, is 6 cm. Find the area of DABC. What will be the height from C to AB i.e., CE?

Given: DABC is isosceles triangle

AB = AC =7.5 cm

BC = 9 cm

AD = 6 cm

To find: A(DABC) = ?

              CE = ?

A(DABC) = ½ X base X height

              = ½ X AD X BC

              = ½ X 6 X 9

              = 3 X 6

              = 27 sq cm

A(DABC) = ½ X base X height

              = ½ X AB X CE

      27    = ½ X 7.5 X CE

½ X 7.5 X CE = 27

              CE = (27 X 2) ÷ 7.5

                     = 54 ÷ 7.5

                     = 7.2 cm

Click here for the solutions of

Exercise 11.1

Exercise 11.2

Exercise 11.3

Exercise 11.4

Exercise 10.1

Exercise 10.2

Exercise 10.3

Exercise 10.4

Exercise 10.5

Exercise 9.1

Exercise 9.2

Exercise 8.1

Exercise 8.2

Exercise 8.3

Exercise 7.1

Exercise 7.2

Exercise 6.1

Exercise 6.2

Exercise 6.3

Exercise 6.4

Exercise 6.5

Exercise 5.1

Exercise 5.2

Exercise 4.1

Exercise 4.2

Exercise 4.3

Exercise 4.4

Exercise 3.1

Exercise 3.2

Exercise 3.3

Exercise 3.4

 

Loading

Leave a Comment

Your email address will not be published. Required fields are marked *

error: Content is protected !!