NCERT Solutions Class 7 Maths Chapter 12 Algebraic Expressions Exercise 12.1

Algebraic Expressions

Exercise 12.1

1). Get the algebraic expressions in the following cases using variables, constants and arithmetic operations.

(i) Subtraction of z from y.

(ii) One-half of the sum of numbers x and y.

(iii) The number z multiplied by itself.

(iv) One-fourth of the product of numbers p and q.

(v) Numbers x and y both squared and added.

(vi) Number 5 added to three times the product of numbers m and n.

(vii) Product of numbers y and z subtracted from 10.

(viii) Sum of numbers a and b subtracted from their product.

Solution:

(i) Subtraction of z from y.

Ans: yz

(ii) One-half of the sum of numbers x and y.

Ans: ½(x + y)

(iii) The number z multiplied by itself.

Ans: z X z

(iv) One-fourth of the product of numbers p and q.

Ans: ¼ pq

(v) Numbers x and y both squared and added.

Ans: x2 + y2

(vi) Number 5 added to three times the product of numbers m and n.

Ans: 5 + 3mn

(vii) Product of numbers y and z subtracted from 10.

Ans: 10 – yz

(viii) Sum of numbers a and b subtracted from their product.

Ans: ab – (a + b)

2). (i) Identify the terms and their factors in the following expressions.

Show the terms and factors by tree diagrams.

(a) x – 3                       (b) 1 + x + x2                (c) y y3

(d) 5xy2 + 7x2y               (e) – ab + 2b2 – 3a2

 

(ii) Identify terms and factors in the expressions given below:

(a) – 4x + 5                  (b) – 4x + 5y                   (c) 5y + 3y2

(d) xy + 2x2y2               (e) pq + q                        (f) 1.2ab – 2.4b + 3.6a

(g)3/4x +1/4               (h) 0.1 p2 + 0.2 q2

 

Solution:

(a) – 4x + 5

Terms: – 4x, 5

Factors: (– 4, x)   (5)                

(b) – 4x + 5y                  

Terms: – 4x, 5y

Factors: (– 4, x)   (5, y)              

 (c) 5y + 3y2

Terms: 5y , 3y2

Factors: (5, y), (3, y, y )                   

(d) xy + 2x2y2              

Terms: xy ,  2x2y2

Factors: (x,y)  (2, x, x, y, y)               

(e) pq + q                       

Terms: pq ,  q

Factors: (p, q)  ( q )                    

(f) 1.2ab – 2.4b + 3.6a

Terms: 1.2ab,  – 2.4b ,  3.6a

Factors: (1.2, a, b) ( – 2.4, b ) (3.6, a)              

(g) 3/4 x + 1/4              

Terms: 3/4 x ,  1/4

Factors: (3/4 , x ) (1/4)                 

(h) 0.1p2 + 0.2q2

Terms: 0.1p2,  0.2q2

Factors: (0.1, p, p )  ( 0.2, q, q)

3). Identify the numerical coefficients of terms (other than constants) in the following expressions:

(i) 5 – 3t2                     (ii) 1 + t + t2 + t3                  (iii) x + 2xy + 3y

(iv) 100m + 1000n         (v) – p2q2 + 7pq                      (vi) 1.2 a + 0.8 b

(vii) 3.14 r2                  (viii) 2 (l + b)                      (ix) 0.1 y + 0.01 y2

Solution:

(i) 5 – 3t2

Term: – 3t2                

The coefficient of  – 3t2  is – 3

(ii) 1 + t + t2 + t3                 

Terms: t , t2 , t3                   

The coefficient of t is 1

The coefficient of t2 is 1      

The coefficient of t3 is 1      

(iii) x + 2xy + 3y

Terms: x , 2xy , 3y              

The coefficient of x is 1

The coefficient of 2xy is 2  

The coefficient of 3y is 3    

(iv) 100m + 1000n

Terms: 100m , 1000n

The coefficient of 100m is 100

The coefficient of 1000n is 1000

 (v) – p2q2 + 7pq                     

Terms:p2q2 , 7pq              

The coefficient of – p2q2  is – 1

The coefficient of 7pq is 7  

 (vi) 1.2a + 0.8b

Terms: 1.2a , 0.8b 

The coefficient of 1.2a x is 1.2

The coefficient of 0.8b is 0.8     

(vii) 3.14 r2                 

Terms: 3.14 r2              

The coefficient of 3.14 r2 is 3.14

(viii) 2 (l + b)

 2 (l + b) = 2l + 2b                     

Terms: 2l , 2b              

The coefficient of 2l  is 2

The coefficient of 2b is 2    

(ix) 0.1y + 0.01y2

Terms: 0.1y , 0.01y2                  

The coefficient of 0.1y is 0.1

The coefficient of 0.01y2is 0.01 

4). (a) Identify terms which contain x and give the coefficient of x.

(i) y2x + y                        (ii) 13y2 – 8yx                        (iii) x + y + 2

(iv) 5 + z + zx                 (v) 1 + x + xy                          (vi) 12xy2 + 25

(vii) 7x + xy2

Solution:

(i) y2x + y                       

Terms containing x: y2x

coefficient of x is y2

(ii) 13y2 – 8yx                       

Terms containing x: – 8yx

coefficient of x is – 8y

(iii) x + y + 2

Terms containing x: x

coefficient of x is 1

(iv) 5 + z + zx                

 Terms containing x: zx

coefficient of x is z

 (v) 1 + x + xy                         

Terms containing x: x, xy

coefficient of x is 1

coefficient of x is y

(vi) 12xy2 + 25

Terms containing x: 12xy2

coefficient of x is 12y2

(vii) 7x + xy2

Terms containing x: 7x, xy2

coefficient of x is 7

coefficient of x is y2

(b) Identify terms which contain y2 and give the coefficient of y2.

(i) 8 – xy2                     (ii) 5y2 + 7x            (iii) 2x2y – 15xy2 + 7y2

Solution:

(i) 8 – xy2                    

Terms containing y2: – xy2

coefficient of y2 is – x

(ii) 5y2 + 7x           

Terms containing y2: 5y2

coefficient of y2 is 5

 (iii) 2x2y – 15xy2 + 7y2

Terms containing y2: – 15xy2, 7y2

coefficient of y2 is – 15x

coefficient of y2 is 7

5). Classify into monomials, binomials and trinomials.

(i) 4y – 7z                       (ii) y2                    (iii) x + y xy

(iv) 100                       (v) ab a b          (vi) 5 – 3t

(vii) 4p2q – 4pq2           (viii) 7mn               

(ix) z2 – 3z + 8 (x) a2 + b2 (xi) z2 + z                (xii) 1 + x + x2

Solution:

(i) 4y – 7z

Ans: It is binomial

(ii) y2                   

Ans: It is monomial

(iii) x + y xy

Ans: It is trinomial

(iv) 100                      

Ans: It is monomial

(v) ab a b         

Ans: It is trinomial

(vi) 5 – 3t

Ans: It is binomial

(vii) 4p2q – 4pq2          

Ans: It is binomial

(viii) 7mn               

Ans: It is monomial

(ix) z2 – 3z + 8

Ans: It is trinomial

(x) a2 + b2

Ans: It is binomial

(xi) z2 + z               

Ans: It is binomial

(xii) 1 + x + x2

Ans: It is trinomial

6). State whether a given pair of terms is of like or unlike terms.

(i) 1, 100                     (ii) –7x,   5/2 x      (iii) – 29x, – 29y

(iv) 14xy, 42yx               (v) 4m2p, 4mp2      (vi) 12xz, 12x2z2

Solution:

(i) 1, 100                    

Ans: They are like terms

(ii) –7x,   5/2 x     

Ans: They are like terms

(iii) – 29x, – 29y

Ans: They are unlike terms

(iv) 14xy, 42yx              

Ans: They are like terms

(v) 4m2p, 4mp2     

Ans: They are unlike terms

(vi) 12xz, 12x2z2

Ans: They are unlike terms

7). Identify like terms in the following:

(a) – xy2, – 4yx2, 8x2, 2xy2, 7y, – 11x2, – 100x, – 11yx, 20x2y,

– 6x2, y, 2xy, 3x

Ans: (– xy2, 2xy2 );  ( – 4yx2, 20x2y );  ( 8x2, – 11x2, – 6x2);  ( 7y, y );

( – 100x, 3x ); ( – 11yx, 2xy )

(b) 10pq, 7p, 8q,  – p2q2, – 7qp, – 100q, – 23, 12q2p2,  – 5p2, 41, 2405p, 78qp, 13p2q, qp2, 701p2

Ans: (10pq, – 7qp, 78qp );  (7p, 2405p); (8q, – 100q ); (– 23, 41);

 ( – p2q2, 12q2p2 ); ( – 5p2, 701p2);  ( 13p2q, qp2 )

Click here for the solutions of

Exercise 12.1

Exercise 12.2

Exercise 12.3

Exercise 12.4

Exercise 11.1

Exercise 11.2

Exercise 11.3

Exercise 11.4

Exercise 10.1

Exercise 10.2

Exercise 10.3

Exercise 10.4

Exercise 10.5

Exercise 9.1

Exercise 9.2

Exercise 8.1

Exercise 8.2

Exercise 8.3

Exercise 7.1

Exercise 7.2

Exercise 6.1

Exercise 6.2

Exercise 6.3

Exercise 6.4

Exercise 6.5

Exercise 5.1

Exercise 5.2

Exercise 4.1

Exercise 4.2

Exercise 4.3

Exercise 4.4

Exercise 3.1

Exercise 3.2

Exercise 3.3

Exercise 3.4

 

Loading

Leave a Comment

Your email address will not be published. Required fields are marked *

error: Content is protected !!