NCERT Solutions Class 7 Maths Chapter 12 Algebraic Expressions Exercise 12.2

Algebraic Expressions

Exercise 12.2

1). Simplify combining like terms:

(i) 21b – 32 + 7b – 20b

Solution:

21b – 32 + 7b – 20b = 21b + 7b – 20b – 32

                              = ( 21 + 7 – 20 ) b – 32

                              = 8b – 32

Ans: 21b – 32 + 7b – 20b = 8b – 32

(ii) – z2 + 13z2 – 5z + 7z3 – 15z

Solution:

z2 + 13z2 – 5z + 7z3 – 15z = 7z3 z2 + 13z2  – 5z   – 15z

                                         = 7z3 +12z2  – 20z

Ans: – z2 + 13z2 – 5z + 7z3 – 15z =7z3 +12z2  – 20z

(iii) p – (p q) – q – (q p)

Solution:

p – (p q) – q – (q p)   = p p + qq q + p

                                  = p p + p + qq q  

                                  = p q

Ans: p – (p q) – q – (q p) = = p q

(iv) 3a – 2b ab – (a b + ab) + 3ab + b a

Solution:

3a – 2b ab – (a b + ab) + 3ab + b a

= 3a – 2b ab a + b ab + 3ab + b a

= 3a  a a abab + 3ab – 2b + b + b

= 2a  a –2ab + 3ab b + b

= a + ab

Ans: 3a – 2b ab – (a b + ab) + 3ab + b a = a + ab

(v) 5x2y – 5x2 + 3yx2 – 3y2 + x2y2 + 8xy2 – 3y2

Solution:

= 5x2y – 5x2 + 3yx2 – 3y2 + x2y2 + 8xy2 – 3y2

= 5x2y + 3yx2 – 5x2 + x2 +  8xy2 – 3y2 y2– 3y2

= 5x2y + 3yx2 – 4x2  + 8xy2 – 7y2

= 8x2y – 4x2  + 8xy2 – 7y2

Ans:5x2y –5x2 +3yx2 –3y2 +x2y2 +8xy2 –3y2 = 8x2y – 4x2 +8xy2 –7y2

(vi) (3y2 + 5y – 4) – (8y y2 – 4)

Solution:

(3y2 + 5y – 4) – (8y y2 – 4)

= 3y2 + 5y – 4 – 8y + y2 + 4

= 3y2 + y2 + 5y  – 8y + 4 – 4

= 4y2 – 3y

Ans: (3y2 + 5y – 4) – (8y y2 – 4) = 4y2 – 3y

2). Add:

(i) 3mn, – 5mn, 8mn, – 4mn

Solution:

(3mn) + (– 5mn) + (8mn) +  (– 4mn)

= 3mn – 5mn + 8mn – 4mn

= ( 3 – 5 + 8 – 4)mn

= 2mn

Ans: (3mn) + (– 5mn) + (8mn) +  (– 4mn)  = 2mn

(ii) t – 8tz, 3tz z, z t

Solution:

(t – 8tz) + (3tz z) + (z t)

= t – 8tz + 3tz z + z t

= t t – 8tz + 3tz z + z

= – 5tz

Ans: (t – 8tz ) + (3tz z) + (z t) = – 5tz

Solution:

(iii) – 7mn + 5, 12mn + 2, 9mn – 8, – 2mn – 3

Solution:

(– 7mn + 5 ) + (12mn + 2) + (9mn – 8) + (– 2mn – 3)

= – 7mn + 5 + 12mn + 2 + 9mn – 8  – 2mn – 3

= – 7mn + 12mn + 9mn – 2mn + 5  + 2  – 8   – 3

= (– 7 + 12 + 9 – 2)mn + 5  + 2  – 8   – 3

= 12mn  – 4

Ans: (– 7mn + 5) + (12mn + 2) + (9mn – 8) + (– 2mn – 3) = 12mn  – 4

(iv) a + b – 3, b a + 3, a b + 3

Solution:

(a + b – 3) + (b a + 3) + (a b + 3)

= a + b – 3 + b a + 3 + a b + 3

= a a + a + b + b b – 3 + 3 + 3

= a + b + 3

Ans: (a + b – 3) + (b a + 3) + (a b + 3) = a + b + 3

(v) 14x + 10y – 12xy – 13, 18 – 7x – 10y + 8xy, 4xy

Solution:

(14x + 10y – 12xy – 13) + (18 – 7x – 10y + 8xy) + (4xy)

= 14x + 10y – 12xy – 13 + 18 – 7x – 10y + 8xy +  4xy

= 14x – 7x  – 12xy + 8xy +  4xy  + 10y  – 10y – 13 + 18

= 7x +  0xy +0y + 5

= 7x + 5

Ans: (14x+10y –12xy –13)+(18–7x–10y+8xy)+(4xy) = 7x + 5

(vi) 5m – 7n, 3n – 4m + 2, 2m – 3mn – 5

Solution:

(5m – 7n) + (3n – 4m + 2) + (2m – 3mn – 5)

= 5m – 7n +  3n – 4m + 2 +  2m – 3mn – 5

= 5m  – 4m +  2m – 7n +  3n  – 3mn + 2– 5

= 3m  – 4n  – 3mn – 3

Ans: (5m –7n)+(3n–4m+2)+(2m–3mn–5) = 3m  – 4n  – 3mn – 3

(vii) 4x2y, – 3xy2, –5xy2, 5x2y

Solution:

(4x2y) + (– 3xy2) + (–5xy2) + (5x2y)

= 4x2y – 3xy2 –5xy2 + 5x2y

= 4x2y+ 5x2y – 3xy2 –5xy2

= 9x2y – 8xy2

Ans: (4x2y) + (– 3xy2) + (–5xy2) + (5x2y)  = 9x2y – 8xy2

(viii) 3p2q2 – 4pq + 5, – 10 p2q2, 15 + 9pq + 7p2q2

Solution:

(3p2q2 – 4pq + 5) + (– 10 p2q2) + (15 + 9pq + 7p2q2)

= 3p2q2 – 4pq + 5 – 10p2q2 +15 + 9pq + 7p2q2

= 3p2q2 – 10p2q2 + 7p2q2 – 4pq + 9pq + 5  +15

= 0p2q2 + 5pq +20

=  5pq +20

Ans: (3p2q2pq+5)+(–10p2q2)+(15+9pq+7p2q2) = 5pq + 20

(ix) ab – 4a, 4b ab, 4a – 4b

Solution:

(ab – 4a)+ (4b ab) + (4a – 4b)

= ab – 4a + 4b ab + 4a – 4b

= ab ab – 4a + 4a + 4b  – 4b

= 0ab +0a + 0b  

= 0

Ans: (ab – 4a)+ (4b ab) + (4a – 4b)  = 0

(x) x2y2 – 1, y2 – 1 – x2, 1 – x2y2

Solution:

(x2y2 – 1) + (y2 – 1 – x2)+ (1 – x2y2)

= x2y2 – 1 + y2 – 1 – x2 + 1 – x2y2

= x2x2 x2  y2 + y2  – y2 – 1 – 1 + 1

=  – x2   y2  – 1

Ans: (x2y2 – 1) + (y2 – 1 – x2)+ (1 – x2y2)  =  – x2  y2  – 1

3). Subtract:

(i) –5y2 from y2

Solution:

y2 – (– 5y2 )

= y2  + 5y2

= 6y2

Ans: y2 – (– 5y2 ) = 6y2

(ii) 6xy from –12xy

Solution:

–12xy – (6xy )

= –12xy – 6xy

= –18xy

Ans: –12xy – (6xy ) = –18xy

(iii) (a b) from (a + b)

Solution:

(a + b)  – (a b)

= a + b  a + b

= a a + b  + b

= 2b

Ans: (a + b)  – (a b) = 2b

(iv) a (b – 5) from b (5 – a)

Solution:

b (5 – a) – a (b – 5)

= 5b  – ab  ab + 5a

= 5b  – 2ab + 5a

Ans: b (5 – a) – a (b – 5) = 5b  – 2ab + 5a

(v) –m2 + 5mn from 4m2 – 3mn + 8

Solution:

4m2 – 3mn + 8 – (–m2 + 5mn )

= 4m2 – 3mn + 8 + m2 – 5mn

= 4m2 + m2 – 3mn – 5mn + 8

= 5m2 – 8mn + 8

Ans:  4m2 – 3mn + 8 – (–m2 + 5mn ) = 5m2 – 8mn + 8

(vi) – x2 + 10x – 5 from 5x – 10

Solution:

5x – 10 – (– x2 + 10x – 5 )

= 5x – 10 + x2 – 10x  + 5

= x2 + 5x  – 10x – 10  + 5

= x2 – 5x – 5

Ans: 5x – 10 – (– x2 + 10x – 5 ) = x2 – 5x – 5

(vii) 5a2 – 7ab + 5b2 from 3ab – 2a2 – 2b2

Solution:

3ab – 2a2 – 2b2 – (5a2 – 7ab + 5b2 )

= 3ab – 2a2 – 2b2 –5a2 + 7ab – 5b2

= 3ab + 7ab – 2a2 –5a2 – 2b2   – 5b2

= 10ab  – 7a2 – 7b2

Ans: 3ab – 2a2 – 2b2 – (5a2 – 7ab + 5b2 )  = 10ab  – 7a2 – 7b2

(viii) 4pq – 5q2 – 3p2 from 5p2 + 3q2pq

Solution:

5p2 + 3q2pq  – (4pq – 5q2 – 3p2 )

= 5p2 + 3q2pq  – 4pq + 5q2 + 3p2

= 5p2 + 3p2  – pq  – 4pq + 3q2+ 5q2

= 8p2 – 5pq + 8q2

Ans: 5p2 + 3q2pq  – (4pq – 5q2 – 3p2 ) = 8p2 – 5pq + 8q2

4). (a) What should be added to x2 + xy + y2 to obtain 2x2 + 3xy?

Let the expression to be added be A

x2 + xy + y2 + A = 2x2 + 3xy

A = 2x2 + 3xy – ( x2 + xy + y2)

       = 2x2 + 3xy –  x2 xy – y2

        = 2x2  x2 + 3xy – xy – y2

          = x2  + 2xy – y2

Ans: the required expression is x2  + 2xy – y2

(b) What should be subtracted from 2a + 8b + 10 to get – 3a + 7b + 16?

Let the expression to be subtracted be A

2a + 8b + 10 – A = – 3a + 7b + 16

→ 2a + 8b + 10 – ( – 3a + 7b + 16 ) = A

→ A = 2a + 8b + 10 – ( – 3a + 7b + 16 )

       = 2a + 8b + 10 + 3a – 7b – 16

       = 2a + 3a + 8b – 7b + 10 – 16

       = 5a + b – 6

Ans: the required expression is 5a + b – 6

5). What should be taken away from 3x2 – 4y2 + 5xy + 20 to obtain

x2y2 + 6xy + 20?

Let the expression to be taken away be A

3x2 – 4y2 + 5xy + 20 – A = – x2y2 + 6xy + 20

→ 3x2 – 4y2 + 5xy + 20 – (– x2y2 + 6xy + 20 ) = A

→ A = 3x2 – 4y2 + 5xy + 20 – ( – x2y2 + 6xy + 20 )

       = 3x2 – 4y2 + 5xy + 20 + x2 + y2 – 6xy – 20

       = 3x2 + x2 + 5xy  – 6xy  – 4y2   + y2 + 20 – 20

       = 4x2xy  – 3y2  

Ans: the required expression is 4x2xy  – 3y2

6). (a) From the sum of 3x y + 11 and – y – 11, subtract 3x y – 11.

[ (3x y + 11) + ( – y – 11)] – ( 3x y – 11)

= [3x y + 11  – y – 11] – ( 3x y – 11)

= (3x y y + 11  – 11) – ( 3x y – 11)

= (3x – 2y  ) – ( 3x y – 11)

= 3x – 2y –  3x + y + 11

= 3x –  3x – 2y  + y + 11

= 0x  y  + 11

=  y  + 11

Ans: the required expression is  y  + 11

(b) From the sum of 4 + 3x and 5 – 4x + 2x2, subtract the sum of 3x2 – 5x and –x2 + 2x + 5.

[ (4 + 3x) + ( 5 – 4x + 2x2)] – [(3x2 – 5x) + (–x2 + 2x + 5)]

= [ 4 + 3x + 5 – 4x + 2x2] – [3x2 – 5xx2 + 2x + 5]

= (4 + 3x + 5 – 4x + 2x2) – (3x2 – 5xx2 + 2x + 5)

= ( 2x2 + 3x – 4x  +4 + 5) – (3x2x2 – 5x  + 2x + 5)

=  (2x2  – x  + 9) – (2x2  – 3x  + 5)

= 2x2  – x  + 9 – 2x2 + 3x  – 5

= 2x2 – 2x2x   + 3x + 9  – 5

= 0x2 +2x + 4

= 2x + 4

Ans: the required expression is  2x + 4

Click here for the solutions of

Exercise 12.1

Exercise 12.2

Exercise 12.3

Exercise 12.4

Exercise 11.1

Exercise 11.2

Exercise 11.3

Exercise 11.4

Exercise 10.1

Exercise 10.2

Exercise 10.3

Exercise 10.4

Exercise 10.5

Exercise 9.1

Exercise 9.2

Exercise 8.1

Exercise 8.2

Exercise 8.3

Exercise 7.1

Exercise 7.2

Exercise 6.1

Exercise 6.2

Exercise 6.3

Exercise 6.4

Exercise 6.5

Exercise 5.1

Exercise 5.2

Exercise 4.1

Exercise 4.2

Exercise 4.3

Exercise 4.4

Exercise 3.1

Exercise 3.2

Exercise 3.3

Exercise 3.4

 

Loading

Leave a Comment

Your email address will not be published. Required fields are marked *

error: Content is protected !!