NCERT Solutions Class 7 Maths Chapter 12 Algebraic Expressions Exercise 12.3

Algebraic Expressions

Exercise 12.3

1). If m = 2, find the value of:

(i) m – 2                                           (ii) 3m – 5

(iii) 9 – 5m                                              (iv) 3m2 – 2m – 7

(v) 5m/2 – 4

Solution:

(i) m – 2

Put m = 2  in the given expression

m – 2 = 2 – 2 = 0                                           

(ii) 3m – 5

Put m = 2  in the given expression

3m – 5 = 3(2) – 5

    = 6 – 5

    = 1                                             

(iii) 9 – 5m                                             

Put m = 2  in the given expression

9 – 5m  = 9–  5(2)

    = 9 – 10

    = –1                                            

(iv) 3m2 – 2m – 7

Put m = 2  in the given expression

3m2 – 2m – 7 = 3(2)2 – 2(2) – 7

    = 3(4) – 4 – 7

    = 12 – 4 – 7

    = 1                                             

(v) 5m/2 – 4

Put m = 2  in the given expression

5m/2 – 4 =( 5 x 2/2 ) – 4

    = (10/2 ) – 4   

          = 5 – 4

          = 1                                              

2). If p = – 2, find the value of:

(i) 4p + 7                                         (ii) – 3p2 + 4p + 7

(iii) – 2p3 – 3p2 + 4p + 7

Solution:

(i) 4p + 7

Put p = – 2 in the given expression

4p + 7 = 4(–2) + 7

    = – 8 + 7

    = – 1                                           

(ii) – 3p2 + 4p + 7

Put p = – 2 in the given expression

– 3p2 + 4p + 7 = – 3(– 2)2 + 4(– 2) + 7

    = – 3(4) – 8 + 7

    = – 12 – 8 + 7

    = – 13                                         

(iii) – 2p3 – 3p2 + 4p + 7

Put p = – 2 in the given expression

– 2p3 – 3p2 + 4p + 7 = – 2(– 2)3 – 3(– 2)2 + 4(– 2) + 7

    = – 2(– 8) – 3(4) – 8 + 7

    = 16 – 12 – 8 + 7

   = 3                                       

3). Find the value of the following expressions, when x = –1:

(i) 2x – 7                                          (ii) – x + 2

(iii) x2 + 2x + 1                                  (iv) 2x2x – 2

Solution:

(i) 2x – 7

Put x = –1 in the given expression

2x – 7 = 2(– 1) – 7

    = – 2 – 7

    = – 9                      

(ii) – x + 2

Put x = –1 in the given expression

x + 2 = – (–1)+ 2

    = 1 + 2

    = 3                  

(iii) x2 + 2x + 1

Put x = –1 in the given expression

x2 + 2x + 1 =(–1)2 + 2(–1) + 1

                 = 1– 2 + 1

          = 0                          

(iv) 2x2x – 2

Put x = –1 in the given expression

2x2x – 2 = 2(–1)2 – (–1) – 2

         = 2(1) + 1– 2

         = 2 + 1 –2

         = 1              

4). If a = 2, b = – 2, find the value of:

(i) a2 + b2                                         (ii) a2 + ab + b2

(iii) a2b2

Solution:

(i) a2 + b2                                        

Put a = 2, b = – 2 in the given expression

a2 + b2 = (2)2 + (– 2)2

    = 4 + (4)

    = 4 + 4

    = 8                         

(ii) a2 + ab + b2

Put a = 2, b = – 2 in the given expression

a2 + ab + b2 = (2)2 + 2 X (– 2) + (– 2)2

    = 4 + (– 4) + (4)

    = 4 – 4 + 4

    = 4                         

(iii) a2b2

Put a = 2, b = – 2 in the given expression

a2b2 = (2)2 – (– 2)2

    = 4 – (4)

    = 4 – 4

    = 0                         

5). When a = 0, b = – 1, find the value of the given expressions:

(i) 2a + 2b                                               (ii) 2a2 + b2 + 1

(iii) 2a2b + 2ab2 + ab                             (iv) a2 + ab + 2

Solution:

(i) 2a + 2b

Put a = 0, b = – 1 in the given expression

2a + 2b = 2(0) + 2(– 1)

    = 0 – 2

    =  – 2

(ii) 2a2 + b2 + 1

Put a = 0, b = – 1 in the given expression

2a2 + b2 + 1 = 2(0)2 + (– 1)2 + 1

    = 2(0) +(1) + 1

    = 0 + 1 + 1

    = 2

(iii) 2a2b + 2ab2 + ab

Put a = 0, b = – 1 in the given expression

2a2b + 2ab2 + ab = 2 X 02 X (– 1) + 2 X 0 X (– 1)2 + 0 X (– 1)

    = 0 + 0 + 0

    = 0

(iv) a2 + ab + 2

Put a = 0, b = – 1 in the given expression

a2 + ab + 2= 02 + 0 X (– 1)  + 2

    = 0 + 0 + 2

    = 2

6). Simplify the expressions and find the value if x is equal to 2

(i) x + 7 + 4 (x – 5)                             (ii) 3 (x + 2) + 5x – 7

(iii) 6x + 5 (x – 2) (iv) 4(2x – 1) + 3x + 11

Solution:

(i) x + 7 + 4 (x – 5)

= x + 7 + 4x – 20

= x + 4x  + 7  – 20  

= 5x – 13

= 5(2) – 13                   (putting x = 2 in the expression)

= 10 – 13

= – 3

(ii) 3 (x + 2) + 5x – 7

= 3x + 6 + 5x – 7

= 3x + 5x + 6 – 7

= 8x – 1

= 8 (2) – 1             (putting x = 2 in the expression)

= 16 – 1

= 15

(iii) 6x + 5 (x – 2)

= 6x + 5x – 10

= 11x – 10

= 11(2) – 10                 (putting x = 2 in the expression)

= 22 – 10

= 12

(iv) 4(2x – 1) + 3x + 11

= 8x – 4 + 3x + 11

= 8x + 3x – 4 + 11

= 11x + 7

= 11(2) + 7                  (putting x = 2 in the expression)

= 22 + 7

= 29

7). Simplify these expressions and find their values if x = 3, a = – 1,

b = – 2.

(i) 3x – 5 – x + 9                                (ii) 2 – 8x + 4x + 4

 

(iii) 3a + 5 – 8a + 1                           (iv) 10 – 3b – 4 – 5b

 

(v) 2a – 2b – 4 – 5 + a

Solution:

(i) 3x – 5 – x + 9

= 3x x – 5 + 9

= 2x + 4

= 2 (3) + 4                   (putting x = 3 in the expression)

= 6 + 4

= 10

(ii) 2 – 8x + 4x + 4

= 2 + 4 – 8x + 4x

= 6 – 4x

= 6 – 4(3)

= 6 – 12

= – 6

(iii) 3a + 5 – 8a + 1

= 3a – 8a + 5 + 1

= – 5a + 6                           (putting a = –1 in the expression)

= – 5(–1) + 6

= 5 + 6

= 11

(iv) 10 – 3b – 4 – 5b

= 10 – 4 – 3b – 5b

= 6 – 8b

= 6 – 8(– 2)                         (putting b = –2 in the expression)

= 6 + 16

= 22

(v) 2a – 2b – 4 – 5 + a

= 2a + a – 2b – 4 – 5

= 3a – 2b – 9

= 3(–1) – 2(–2) – 9               (putting a = –1, b = –2 in the expression)             

=  – 3 + 4 – 9

= – 8

8). (i) If z = 10, find the value of z3 – 3(z – 10).

z3 – 3(z – 10) = z3 – 3z + 30

                     = (10)3 – 3(10) + 30

                     = 1000 – 30 + 30

                     = 1000

(ii) If p = – 10, find the value of p2 – 2p – 100

p2 – 2p – 100 = (–10)2 – 2(–10) – 100

                     = 100 + 20 – 100

                     = 20

9). What should be the value of a if the value of 2x2 + x a equals to 5, when x = 0?

2x2 + x a = 5 when x = 0

Put x = 0 in the above expression

2(0)2 +(0) – a = 5

2 X 0 + 0 – a = 5

0 + 0 – a = 5

a = 5

a = – 5

10). Simplify the expression and find its value when a = 5 and

b = – 3.

2(a2 + ab) + 3 – ab  

= 2a2 + 2ab + 3 – ab

= 2a2 + 2abab + 3

= 2a2 + ab + 3

= 2(5)2 + 5 X ( – 3) + 3

= 2 (25) – 15 + 3

= 50 – 15 + 3

= 38

Click here for the solutions of

Exercise 12.1

Exercise 12.2

Exercise 12.3

Exercise 12.4

Exercise 11.1

Exercise 11.2

Exercise 11.3

Exercise 11.4

Exercise 10.1

Exercise 10.2

Exercise 10.3

Exercise 10.4

Exercise 10.5

Exercise 9.1

Exercise 9.2

Exercise 8.1

Exercise 8.2

Exercise 8.3

Exercise 7.1

Exercise 7.2

Exercise 6.1

Exercise 6.2

Exercise 6.3

Exercise 6.4

Exercise 6.5

Exercise 5.1

Exercise 5.2

Exercise 4.1

Exercise 4.2

Exercise 4.3

Exercise 4.4

Exercise 3.1

Exercise 3.2

Exercise 3.3

Exercise 3.4

 

 

Loading

Leave a Comment

Your email address will not be published. Required fields are marked *

error: Content is protected !!