NCERT Solutions Class 8 Maths Chapter 5 Squares and Square Roots Exercise 5.2

Squares And Square Roots 

Exercise 5.2

1). Find the square of the following numbers.

(i) 32                                              (ii) 35

(iii) 86                                            (iv) 93

(v) 71                                             (vi) 46

Solution:

(i) 32

 32 = 30 + 2

(a+b)2 = a2 + 2ab + b2

322 = (30 + 2)2

       = (30)2 + 2 X 30 X 2 + (2)2

       = 900 + 120 + 4

       = 1024  

(ii) 35

35 = 30 + 5

(a+b)2 = a2 + 2ab + b2

352 = (30 + 5)2

       = (30)2 + 2 X 30 X 5 + (5)2

       = 900 + 300 + 25

       = 1225  

(iii) 86

86 = 80 + 6

(a+b)2 = a2 + 2ab + b2

862 = (80 + 6)2

       = (80)2 + 2 X 80 X 6 + (6)2

       = 6400 + 960 + 36

       = 7396  

(iv) 93

93 = 90 + 3

(a+b)2 = a2 + 2ab + b2

932 = (90 + 3)2

       = (90)2 + 2 X 90 X 3 + (3)2

       = 8100 + 540 + 9

       = 8649  

(v) 71

71 = 70 + 1

(a+b)2 = a2 + 2ab + b2

712 = (70 + 1)2

       = (70)2 + 2 X 70 X 1 + (1)2

       = 4900 + 140 + 1

       = 5041

(vi) 46

46 = 40 + 6

(a+b)2 = a2 + 2ab + b2

462 = (40 + 6)2

       = (40)2 + 2 X 40 X 6 + (6)2

       = 1600 + 480 + 36

       = 2116  

2). Write a Pythagorean triplet whose one member is.

(i) 6                                                      (ii) 14

(iii) 16                                            (iv) 18

Solution:

(i) 6       

We can get Pythagorean triplets by using general form 2m, m2 – 1,

m2 + 1.

Let m2 – 1 = 6

m2  = 6 + 1

m2 = 7

m cannot be an integer.

Let m2 + 1 = 6

m2 = 6 – 1

m2  = 5

m cannot be an integer

therefore, let 2m = 6

m = 3

m2 – 1 = 32 – 1 = 9 – 1 = 8

m2 + 1 = 32 + 1 = 9 + 1 = 10

Ans: The Pythagorean triplets are 6, 8, 10.

(ii) 14

We can get Pythagorean triplets by using general form 2m, m2 – 1,

m2 + 1.

Let m2 – 1 = 14

m2  = 14 + 1

m2 = 15

m cannot be an integer.

Let m2 + 1 = 14

m2 = 14 – 1

m2  = 13

m cannot be an integer

therefore, let 2m = 14

m = 7

m2 – 1 = 72 – 1 = 49 – 1 = 48

m2 + 1 = 72 + 1 = 49 + 1 = 50

Ans: the Pythagorean triplets are 14, 48, 50.

(iii) 16

We can get Pythagorean triplets by using general form 2m, m2 – 1,

m2 + 1.

let 2m = 16

m = 8

m2 – 1 = 82 – 1 = 64 – 1 = 63

m2 + 1 = 82 + 1 = 64 + 1 = 65

Ans: the Pythagorean triplets are 16, 63, 65.

(iv) 18

We can get Pythagorean triplets by using general form 2m, m2 – 1,

m2 + 1.

let 2m = 18

m = 9

m2 – 1 = 92 – 1 = 81 – 1 = 80

m2 + 1 = 92 + 1 = 81 + 1 = 82

Ans: the Pythagorean triplets are 18, 80, 82

Click here for the solutions of Std 8 Maths

1). Rational Numbers

 Exercise 1.1

2). Linear Equations in One Variable

Exercise 2.1

Exercise 2.2

3). Understanding Quadrilaterals

Exercise 3.1

Exercise 3.2

Exercise 3.3

Exercise 3.4

4). Data Handling

Exercise 4.1

Exercise 4.2

5). Squares and Square Roots

Exercise 5.1

Exercise 5.2

Exercise 5.3

Exercise 5.4

 

Loading

Leave a Comment

Your email address will not be published. Required fields are marked *

error: Content is protected !!